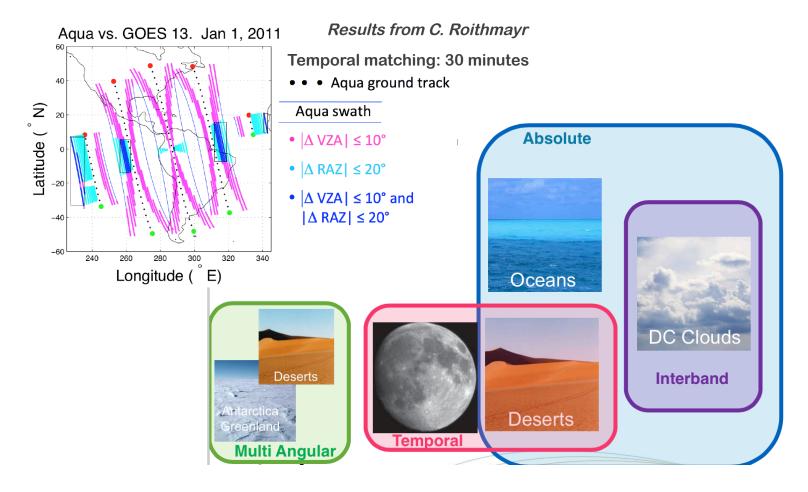


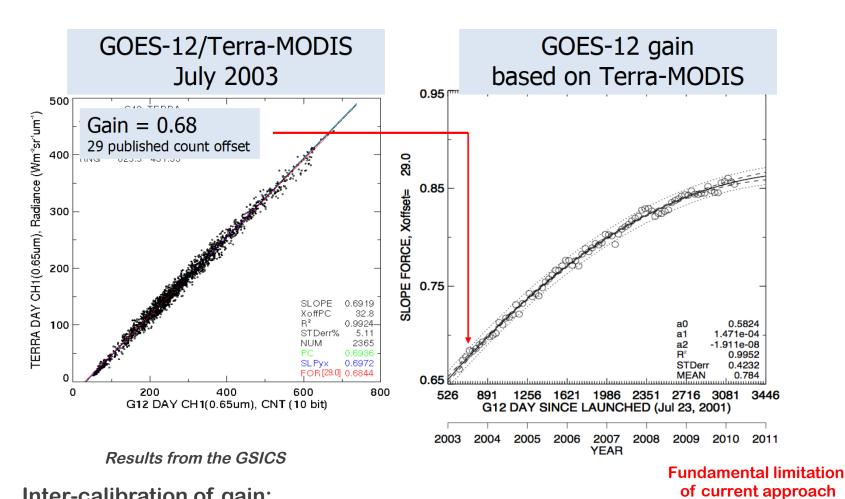
CLARREO Pathfinder Inter-calibration: Requirements, Objectives & Opportunities

Constantine Lukashin, NASA LaRC

Outline:


- Inter-calibration of sensors: background
- Mission Requirements & Success Criteria
- ♦ On-orbit pointing approach for inter-calibration
- ♦ Instrument Field-of-Regard from ISS location
- ♦ Other Inter-calibration opportunities
- Inter-calibration event prediction & sampling
- ♦ Inter-calibration data products
- Publications

Inter-Calibration of Sensors in RS: Current



- **♦ LEO and GEO data matching when available (e.g. MODIS and GOES-13).**
- ♦ Uniform and stable surface sites.
- ♦ Instrument stability by observing the Moon (e.g. SeaWIFS).
- ♦ Deep Convective Clouds, clear ocean & deserts: involve RT modeling.

Inter-Calibration of Sensors in RS: Current

Inter-calibration of gain:

Type A uncertainty (random) is 5.11% (k=1): due to data matching.

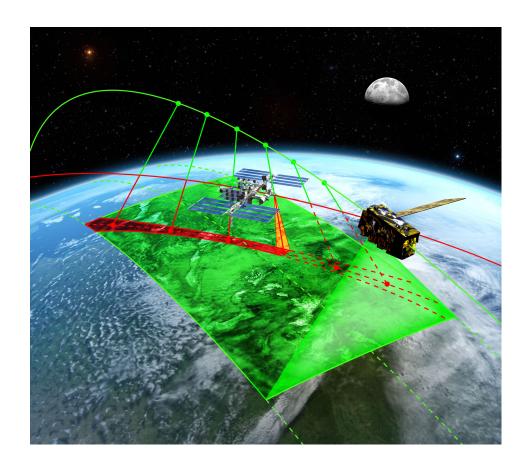
Type B uncertainty (not random) is defined by the MODIS accuracy of 2% (k=1) [pre-launch].

Spectral Type B uncertainty: due to difference in spectral response.

Inter-Calibration Objectives & Requirements

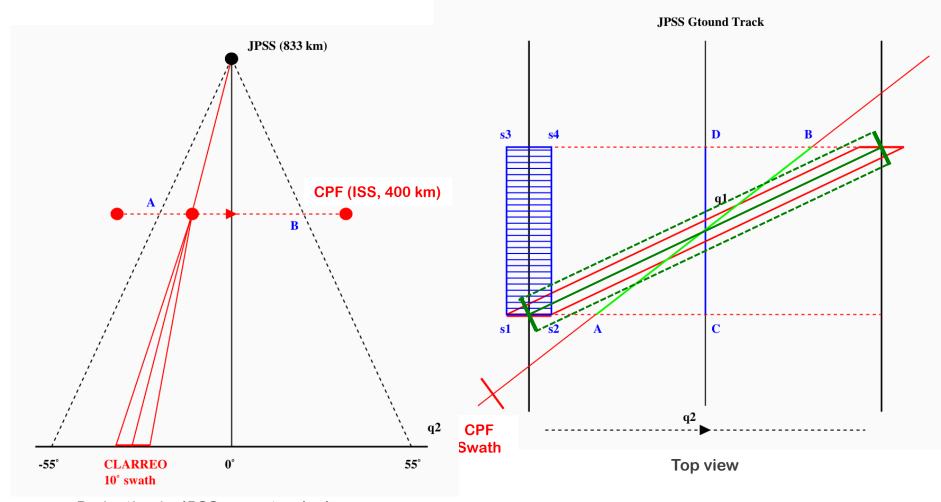
Baseline Science Objectives:

The CLARREO Pathfinder objective is to demonstrate the ability to use the reflected solar spectrometer as an in-orbit transfer standard for intercalibration of the reflectance bands of the VIIRS instrument and the CERES instrument's shortwave channel. The uncertainty contribution from inter-calibration approach should be limited to 0.3% (k=1).


Threshold Science Requirements:

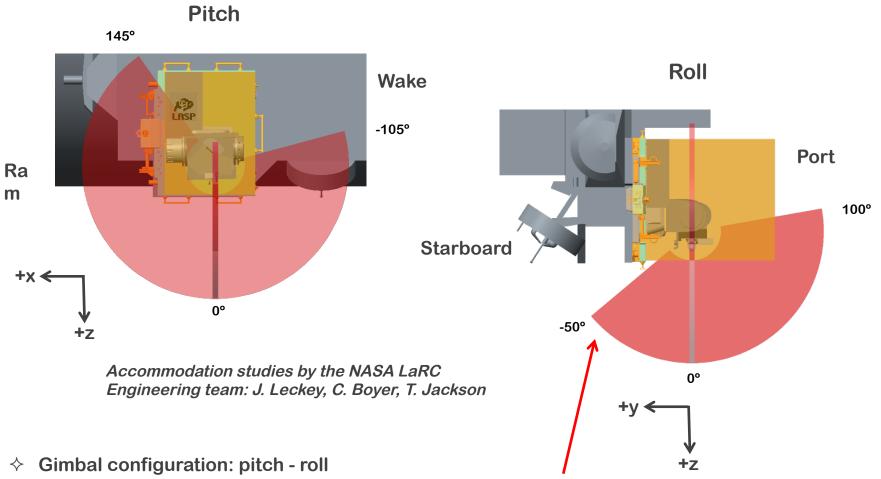
The CLARREO Pathfinder shall demonstrate the ability to use the reflected solar spectrometer as an in-orbit transfer standard for intercalibration of the reflectance bands of the VIIRS instrument and the CERES instrument's shortwave channel. The uncertainty contribution from inter-calibration approach should be limited to 0.6% (k=1).

Inter-Calibration Concept: CERES & VIIRS



- ♦ CLARREO Pathfinder Instrument provides high-accuracy reference on orbit.
- **♦ CLARREO Pathfinder Instrument has 2D pointing ability for real-time data matching.**
- ♦ CLARREO Pathfinder data matching with CERES and VIIRS on JPSS: temporal matching within 10 minutes, on-orbit angular/spacial matching.
- ♦ CLARREO Pathfinder location on ISS: ELC-1 Site 3.

Inter-Calibration of Sensors: CERES & VIIRS

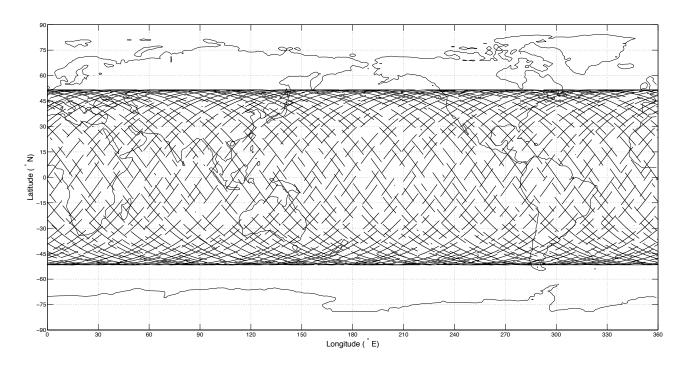

Projection in JPSS cross-track plane

Red: full CLARREO approach
Green: CLARREO Pathfinder approach

RS Instrument Field-of-Regard

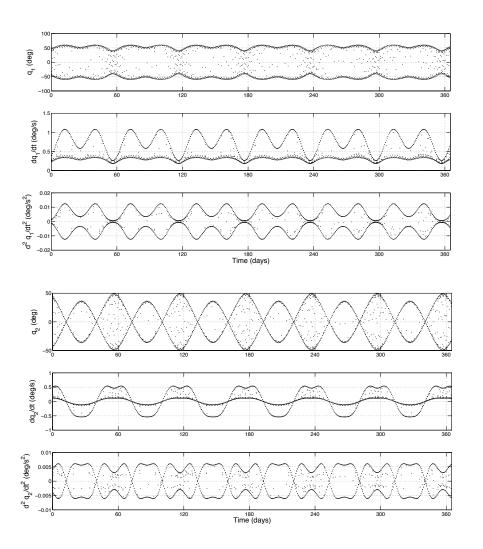
- ♦ Approximate gimbal range of motion at ISS ELC-1 Site 3.
- ♦ Not all pointing angles are available due to ISS accommodation.
- ♦ Refine analysis for ISS components affecting RS instrument view in Phase-A.

Inter-Calibration Event Prediction


- New approach: first inter-calibration by real-time pointing off-nadir!
- Inter-calibration on-orbit operations are planned ahead of time!
- (1) Inter-calibration of Sensors:
- Prediction by orbital modeling
- ♦ Filter out events with instrument FOV obscured by ISS fixed and rotating structures
- ♦ Assess the value for every event by modeling
- **♦** Deliver event parameters to instrument operations team
- (2) Calibration of Lunar Spectral Reflectance:
- ♦ Prediction of Moon viewing by orbital modeling
- ♦ Filter out events with instrument FOV obscured by ISS fixed and rotating structures
- Assess the value for every lunar geometry by modeling
- ♦ Coordinate with the instrument calibration team
- ♦ Deliver event parameters to instrument operations team
- (3) Characterization of Surface Sites:
- Prediction by orbital modeling
- ♦ Filter out events with instrument FOV obscured by ISS fixed and rotating structures
- ♦ Assess the value for every event by modeling
- ♦ Deliver event parameters to instrument operations team

Inter-Calibration Events: Geolocation

Results from C. Roithmayr


Geolocation of the ISS ground track during each opportunity to take measurements for inter-calibrating JPSS cross-track sensors (CERES and VIIRS).

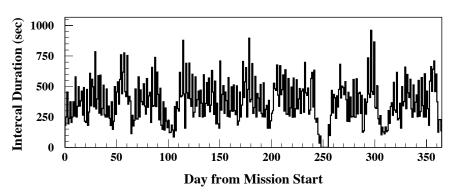
- ♦ Instrument FOV = 10°
- ♦ Time matching +/- 10 minutes
- ♦ 1262 inter-calibration opportunities over 1 year

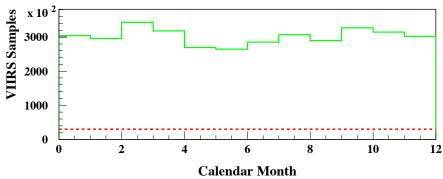
Inter-Calibration Events: Gimbal Motion

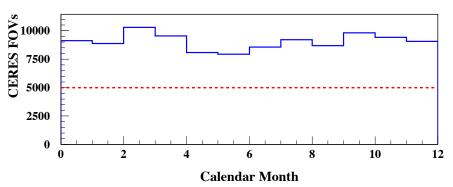
Results from C. Roithmayr

Behavior of the gimbal: for each opportunity, the maximum and minimum gimbal angle q1, angular speed d(q1)/dt, and angular acceleration d²(q1)/dt² are shown in the top, middle, and bottom plots, respectively.

Behavior of the gimbal: for each opportunity, the maximum and minimum gimbal angle q2, angular speed d(q2)/dt, and angular acceleration d²(q2)/dt² are shown in the top, middle, and bottom plots, respectively.


q1 – pitch angle q2 – roll angle


Inter-calibration with CERES and VIIRS on JPSS



Inter-Calibration: Sampling & Margin

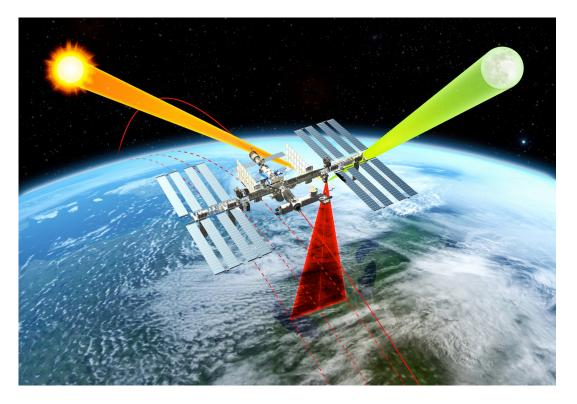
Simulation ISS ELC-1 Site 3:

- 10 minutes time matching
- ♦ Instrument field-of-regard
- ♦ Instrument FOV = 10°
- ♦ Instrument FOV obscuration = 0%
- ♦ Event duration > 30 seconds
- **♦ SZA < 75°**
- ♦ N good events = 1163

VIIRS:

100 samples every 5 seconds (imager re-sampling)

CERES:


3 FOVs every 5 seconds (large FOV)

Margin at 44% for operations not-available on average!

Other Inter-Calibration Opportunities

SENSORS:

- ♦ GEO imagers:
 NOAA ABI on GOES-16
 EUMETSAT
 ESA GERB
- ♦ Land imagers:USGS LandsatESA Sentinel-2A/B

CALIBRATION TARGETS:

- ♦ Instrumented and not-instrumented Surface Sites (deserts)
- ♦ Moon: improve accuracy of lunar spectral reflectance

Inter-Calibration Data Products

Product	Contents	Resolution	Granule
Level-1 Products for VIIRS CERES GEO (NOAA, ESA, etc.) Landsat (USGS) Surface Sites Moon	Calibrated and geolocated CPF observations.	Full spectral and spatial resolution of the CPF RS Instrument.	Each granule contains single CPF inter- calibration event.
Level-4 Products for VIIRS CERES	Collections of CPF (Level- 1), VIIRS, and CERES matched data (Level-1 & Level-2).	CLARREO (Level-11) and VIIRS (Level-1 & Level-2, Clouds and Aerosols) data spatially convolved over IC sample. CLARREO Spectral re-sampling. CLARREO (Level-1) spatially convolved over CERES FOV's PSF. CLARREO conversion to broadband reflectance. Scene ID from the CERES SSF.	Data processed by the CPF inter- calibration events.
Level-4 Products for VIIRS CERES	Inter-calibration results: Constraints on effective offset, gain, non-linearity, sensitivity to polarization, and spectral degradation.	N/A	N/A

Additional data analysis – by a separately funded science team

CLARREO Inter-Calibration: Key Publications

Roithmayr, C.M., and P.W. Speth, 2012: "Analysis of opportunities for intercalibration between two spacecraft," Advances in Engineering Research Vol. 1, Chapter 13, Edited: V.M. Petrova, *Nova Science Publishers*, Hauppauge, NY, pp. 409 - 436.

Lukashin, C., B. A. Wielicki, D. F. Young, K. Thome, Z. Jin, and W. Sun, 2013: "Uncertainty estimates for imager reference inter-calibration with CLARREO reflected solar spectrometer," *IEEE Trans. on Geo. and Rem. Sensing, special issue on Intercalibration of satellite instruments*, 51, n. 3, pp. 1425 – 1436.

Roithmayr, C. M., C. Lukashin, P. W. Speth, G. Kopp, K. Thome, B. A. Wielicki, and D.F. Young, 2014a: "CLARREO Approach for Reference Inter-Calibration of Reflected Solar Sensors: On-Orbit Data Matching and Sampling," *IEEE TGRS*, v. 52, 10, pp. 6762 - 6774.

Roithmayr, C. M., C. Lukashin, P. W. Speth, D.F. Young, B.A. Wielicki, K. J. Thome, and G. Kopp, 2014b, "Opportunities to Intercalibrate Radiometric Sensors from International Space Station," *J. of Atm. and Oce. Tech.*, DOI: 10.1175/JTECH-D-13-00163.1.

Wu, A., X. Xiong, Z. Jin, C. Lukashin, B.N. Wenny, J.J. Butler, 2015: "Sensitivity of Intercalibration Uncertainty of the CLARREO Reflected Solar Spectrometer Features," IEEE TGRS, v. 53, 4741 - 4751, 10.1109/TGRS.2015.2409030

Sun W., C. Lukashin, and D. Goldin, 2015: "Modeling polarized solar radiation for CLARREO inter-calibration applications: Validation with PARASOL data," *J. Quant. Spectrosc. Radiat.*, v. 150, pp. 121 - 133.

Sun, W., R.R. Baize, C. Lukashin, and Y. Hu, 2015: "Deriving polarization properties of desert-reflected solar spectra with PARASOL data," *Atmos. Chem. Phys.*, 15, 7725 - 7734, doi: 10.5194/acp-15-7725-2015.